Guardrails
Input/output validation and content safety using adk-guardrail.
Overview
Guardrails validate and transform agent inputs and outputs to ensure safety, compliance, and quality. They run in parallel with agent execution and can:
- Block harmful or off-topic content
- Redact PII (emails, phones, SSNs, credit cards)
- Enforce JSON schema on outputs
- Limit content length
Installation
[dependencies]
adk-guardrail = "0.2.0"
# For JSON schema validation
adk-guardrail = { version = "0.2.0", features = ["schema"] }
Core Concepts
GuardrailResult
Every guardrail returns one of three results:
pub enum GuardrailResult {
Pass, // Content is valid
Fail { reason: String, severity: Severity }, // Content rejected
Transform { new_content: Content, reason: String }, // Content modified
}
Severity Levels
pub enum Severity {
Low, // Warning only, doesn't block
Medium, // Blocks but continues other checks
High, // Blocks immediately
Critical, // Blocks and fails fast
}
PII Redaction
Automatically detect and redact personally identifiable information:
use adk_guardrail::{PiiRedactor, PiiType};
// Default: emails, phones, SSNs, credit cards
let redactor = PiiRedactor::new();
// Or select specific types
let redactor = PiiRedactor::with_types(&[
PiiType::Email,
PiiType::Phone,
]);
// Direct redaction
let (redacted, found_types) = redactor.redact("Email: test@example.com");
// redacted = "Email: [EMAIL REDACTED]"
// found_types = [PiiType::Email]
Supported PII Types:
| Type | Pattern | Redaction |
|---|---|---|
Email | user@domain.com | [EMAIL REDACTED] |
Phone | 555-123-4567 | [PHONE REDACTED] |
Ssn | 123-45-6789 | [SSN REDACTED] |
CreditCard | 4111-1111-1111-1111 | [CREDIT CARD REDACTED] |
IpAddress | 192.168.1.1 | [IP REDACTED] |
Content Filtering
Block harmful content or enforce topic constraints:
use adk_guardrail::ContentFilter;
// Block harmful content patterns
let filter = ContentFilter::harmful_content();
// Block specific keywords
let filter = ContentFilter::blocked_keywords(vec![
"forbidden".into(),
"banned".into(),
]);
// Enforce topic relevance
let filter = ContentFilter::on_topic("cooking", vec![
"recipe".into(),
"cook".into(),
"bake".into(),
]);
// Limit content length
let filter = ContentFilter::max_length(1000);
Custom Content Filter
use adk_guardrail::{ContentFilter, ContentFilterConfig, Severity};
let config = ContentFilterConfig {
blocked_keywords: vec!["spam".into()],
required_topics: vec!["rust".into(), "programming".into()],
max_length: Some(5000),
min_length: Some(10),
severity: Severity::High,
};
let filter = ContentFilter::new("custom_filter", config);
Schema Validation
Enforce JSON schema on agent outputs (requires schema feature):
use adk_guardrail::SchemaValidator;
use serde_json::json;
let schema = json!({
"type": "object",
"properties": {
"name": { "type": "string" },
"age": { "type": "integer", "minimum": 0 }
},
"required": ["name"]
});
let validator = SchemaValidator::new(&schema)?
.with_name("user_schema")
.with_severity(Severity::High);
The validator extracts JSON from:
- Raw JSON text
- Markdown code blocks (
```json ... ```)
GuardrailSet
Combine multiple guardrails:
use adk_guardrail::{GuardrailSet, ContentFilter, PiiRedactor};
let guardrails = GuardrailSet::new()
.with(ContentFilter::harmful_content())
.with(ContentFilter::max_length(5000))
.with(PiiRedactor::new());
GuardrailExecutor
Run guardrails and get detailed results:
use adk_guardrail::{GuardrailExecutor, GuardrailSet, PiiRedactor};
use adk_core::Content;
let guardrails = GuardrailSet::new()
.with(PiiRedactor::new());
let content = Content::new("user")
.with_text("Contact: test@example.com");
let result = GuardrailExecutor::run(&guardrails, &content).await?;
if result.passed {
// Use transformed content if available
let final_content = result.transformed_content.unwrap_or(content);
println!("Content passed validation");
} else {
for (name, reason, severity) in &result.failures {
println!("Guardrail '{}' failed: {} ({:?})", name, reason, severity);
}
}
ExecutionResult
pub struct ExecutionResult {
pub passed: bool, // Overall pass/fail
pub transformed_content: Option<Content>, // Modified content (if any)
pub failures: Vec<(String, String, Severity)>, // (name, reason, severity)
}
Custom Guardrails
Implement the Guardrail trait:
use adk_guardrail::{Guardrail, GuardrailResult, Severity};
use adk_core::Content;
use async_trait::async_trait;
pub struct ProfanityFilter {
words: Vec<String>,
}
#[async_trait]
impl Guardrail for ProfanityFilter {
fn name(&self) -> &str {
"profanity_filter"
}
async fn validate(&self, content: &Content) -> GuardrailResult {
let text: String = content.parts
.iter()
.filter_map(|p| p.text())
.collect();
for word in &self.words {
if text.to_lowercase().contains(word) {
return GuardrailResult::Fail {
reason: format!("Contains profanity: {}", word),
severity: Severity::High,
};
}
}
GuardrailResult::Pass
}
// Run in parallel with other guardrails (default: true)
fn run_parallel(&self) -> bool {
true
}
// Fail fast on this guardrail's failure (default: true)
fn fail_fast(&self) -> bool {
true
}
}
Integration with Agents
Guardrails integrate with LlmAgentBuilder:
use adk_agent::LlmAgentBuilder;
use adk_guardrail::{GuardrailSet, ContentFilter, PiiRedactor};
let input_guardrails = GuardrailSet::new()
.with(ContentFilter::harmful_content())
.with(PiiRedactor::new());
let output_guardrails = GuardrailSet::new()
.with(SchemaValidator::new(&output_schema)?);
let agent = LlmAgentBuilder::new("assistant")
.model(model)
.instruction("You are a helpful assistant.")
.input_guardrails(input_guardrails)
.output_guardrails(output_guardrails)
.build()?;
Execution Flow
User Input
β
βΌ
βββββββββββββββββββββββ
β Input Guardrails β β PII redaction, content filtering
β (parallel) β
βββββββββββββββββββββββ
β
βΌ (transformed or blocked)
βββββββββββββββββββββββ
β Agent Execution β
βββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββ
β Output Guardrails β β Schema validation, safety checks
β (parallel) β
βββββββββββββββββββββββ
β
βΌ
Final Response
Examples
# Basic PII and content filtering
cargo run --example guardrail_basic --features guardrails
# JSON schema validation
cargo run --example guardrail_schema --features guardrails
# Full agent integration
cargo run --example guardrail_agent --features guardrails
Best Practices
| Practice | Description |
|---|---|
| Layer guardrails | Use input guardrails for safety, output for quality |
| PII on input | Redact PII before it reaches the model |
| Schema on output | Validate structured outputs with JSON schema |
| Appropriate severity | Use Critical sparingly, Low for warnings |
| Test thoroughly | Guardrails are security-critical code |
Previous: β Access Control | Next: Memory β