图代理
使用原生 ADK-Rust 集成,通过 LangGraph 风格的编排构建复杂、有状态的工作流。
概述
GraphAgent 允许您将工作流定义为带有节点和边的有向图,支持:
- AgentNode:将 LLM agents 包装为具有自定义输入/输出映射器的图节点
- 循环工作流:原生支持循环和迭代推理 (ReAct pattern)
- 条件路由:基于状态的动态边路由
- 状态管理:带 reducer 的类型化状态(覆盖、追加、求和、自定义)
- 检查点:用于容错和人机协作的持久状态
- 流式传输:多种流模式(值、更新、消息、调试)
adk-graph crate 为构建复杂、有状态的 agent 工作流提供了 LangGraph 风格的工作流编排。它将基于图的工作流功能引入 ADK-Rust 生态系统,同时保持与 ADK 的 agent system 的完全兼容性。
主要优势:
- 可视化工作流设计:将复杂逻辑定义为直观的节点和边图
- 并行执行:多个节点可以同时运行以获得更好的性能
- 状态持久性:内置检查点,用于容错和人机协作
- LLM 集成:原生支持将 ADK agents 包装为图节点
- 灵活路由:静态边、条件路由和动态决策
你将构建什么
在本指南中,你将创建一个并行运行翻译和摘要的文本处理管道:
┌─────────────────────┐
User Input │ │
────────────────▶ │ START │
│ │
└──────────┬──────────┘
│
┌───────────────┴───────────────┐
│ │
▼ ▼
┌──────────────────┐ ┌──────────────────┐
│ TRANSLATOR │ │ SUMMARIZER │
│ │ │ │
│ 🇫🇷 French │ │ 📝 One sentence │
│ Translation │ │ Summary │
└─────────┬────────┘ └─────────┬────────┘
│ │
└───────────────┬───────────────┘
│
▼
┌─────────────────────┐
│ COMBINE │
│ │
│ 📋 Merge Results │
└──────────┬──────────┘
│
▼
┌─────────────────────┐
│ END │
│ │
│ ✅ Complete │
└─────────────────────┘
核心概念:
- Nodes - 执行工作的处理单元(LlmAgent、函数或自定义逻辑)
- Edges - 节点之间的控制流(静态连接或条件路由)
- State - 在图中流动并在节点之间持久化的共享数据
- 并行执行 - 多个节点可以同时运行以获得更好的性能
理解核心组件
🔧 Nodes: 工作者 Nodes 是实际工作发生的地方。每个节点可以:
- AgentNode: 封装一个 LlmAgent 来处理自然语言
- Function Node: 执行自定义 Rust 代码进行数据处理
- Built-in Nodes: 使用预定义逻辑,例如计数器或验证器
将 Nodes 想象成装配线上的专业工人——每个都有特定的工作和专长。
🔀 Edges: 流程控制 Edges 决定了执行如何在你的图中移动:
- Static Edges: 直接连接(
A → B → C) - Conditional Edges: 基于 State 的动态路由(
if sentiment == "positive" → positive_handler) - Parallel Edges: 从一个节点出发的多条路径(
START → [translator, summarizer])
Edges 就像红绿灯和路标,指导着工作流。
💾 State: 共享内存 State 是一个键值存储,所有 Nodes 都可以从中读取和写入:
- 输入数据: 馈入图中的初始信息
- 中间结果: 一个节点的输出成为另一个节点的输入
- 最终输出: 所有处理完成后的最终结果
State 就像一个共享白板,Nodes 可以在上面留下信息供其他节点使用。
⚡ 并行执行: 速度提升 当多个 Edges 离开一个节点时,那些目标节点会同时运行:
- 更快的处理速度: 独立任务同时运行
- 资源效率: 更好地利用 CPU 和 I/O
- 可扩展性: 处理更复杂的工作流而不会出现线性减速
这就像让多名工人同时处理一项工作的不同部分,而不是排队等待。
快速开始
1. 创建你的项目
cargo new graph_demo
cd graph_demo
将依赖项添加到 Cargo.toml:
[dependencies]
adk-graph = { version = "0.2", features = ["sqlite"] }
adk-agent = "0.2"
adk-model = "0.2"
adk-core = "0.2"
tokio = { version = "1", features = ["full"] }
dotenvy = "0.15"
serde_json = "1.0"
使用你的 API key 创建 .env 文件:
echo 'GOOGLE_API_KEY=your-api-key' > .env
2. 并行处理示例
这是一个完整的并行处理文本的工作示例:
use adk_agent::LlmAgentBuilder;
use adk_graph::{
agent::GraphAgent,
edge::{END, START},
node::{AgentNode, ExecutionConfig, NodeOutput},
state::State,
};
use adk_model::GeminiModel;
use serde_json::json;
use std::sync::Arc;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
dotenvy::dotenv().ok();
let api_key = std::env::var("GOOGLE_API_KEY")?;
let model = Arc::new(GeminiModel::new(&api_key, "gemini-2.0-flash")?);
// Create specialized LLM agents
let translator_agent = Arc::new(
LlmAgentBuilder::new("translator")
.description("Translates text to French")
.model(model.clone())
.instruction("Translate the input text to French. Only output the translation.")
.build()?,
);
let summarizer_agent = Arc::new(
LlmAgentBuilder::new("summarizer")
.description("Summarizes text")
.model(model.clone())
.instruction("Summarize the input text in one sentence.")
.build()?,
);
// Wrap agents as graph nodes with input/output mappers
let translator_node = AgentNode::new(translator_agent)
.with_input_mapper(|state| {
let text = state.get("input").and_then(|v| v.as_str()).unwrap_or("");
adk_core::Content::new("user").with_text(text)
})
.with_output_mapper(|events| {
let mut updates = std::collections::HashMap::new();
for event in events {
if let Some(content) = event.content() {
let text: String = content.parts.iter()
.filter_map(|p| p.text())
.collect::<Vec<_>>()
.join("");
if !text.is_empty() {
updates.insert("translation".to_string(), json!(text));
}
}
}
updates
});
let summarizer_node = AgentNode::new(summarizer_agent)
.with_input_mapper(|state| {
let text = state.get("input").and_then(|v| v.as_str()).unwrap_or("");
adk_core::Content::new("user").with_text(text)
})
.with_output_mapper(|events| {
let mut updates = std::collections::HashMap::new();
for event in events {
if let Some(content) = event.content() {
let text: String = content.parts.iter()
.filter_map(|p| p.text())
.collect::<Vec<_>>()
.join("");
if !text.is_empty() {
updates.insert("summary".to_string(), json!(text));
}
}
}
updates
});
// Build the graph with parallel execution
let agent = GraphAgent::builder("text_processor")
.description("Processes text with translation and summarization in parallel")
.channels(&["input", "translation", "summary", "result"])
.node(translator_node)
.node(summarizer_node)
.node_fn("combine", |ctx| async move {
let translation = ctx.get("translation").and_then(|v| v.as_str()).unwrap_or("N/A");
let summary = ctx.get("summary").and_then(|v| v.as_str()).unwrap_or("N/A");
let result = format!(
"=== Processing Complete ===\n\n\
French Translation:\n{}\n\n\
Summary:\n{}",
translation, summary
);
Ok(NodeOutput::new().with_update("result", json!(result)))
})
// Parallel execution: both nodes start simultaneously
.edge(START, "translator")
.edge(START, "summarizer")
.edge("translator", "combine")
.edge("summarizer", "combine")
.edge("combine", END)
.build()?;
// Execute the graph
let mut input = State::new();
input.insert("input".to_string(), json!("AI is transforming how we work and live."));
let result = agent.invoke(input, ExecutionConfig::new("thread-1")).await?;
println!("{}", result.get("result").and_then(|v| v.as_str()).unwrap_or(""));
Ok(())
}
示例输出:
=== Processing Complete ===
French Translation:
L'IA transforme notre façon de travailler et de vivre.
Summary:
AI is revolutionizing work and daily life through technological transformation.
图执行机制
宏观视图
Graph agents 以 超级步骤 的方式执行——所有就绪的节点并行运行,然后图等待所有节点完成,再进入下一步:
Step 1: START ──┬──▶ translator (running)
└──▶ summarizer (running)
⏳ Wait for both to complete...
Step 2: translator ──┬──▶ combine (running)
summarizer ──┘
⏳ Wait for combine to complete...
Step 3: combine ──▶ END ✅
状态在节点间的流动
每个节点都可以读取和写入共享状态:
┌─────────────────────────────────────────────────────────────────────┐
│ STEP 1: 初始状态 │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ State: { "input": "AI is transforming how we work" } │
│ │
│ ↓ │
│ │
│ ┌──────────────────┐ ┌──────────────────┐ │
│ │ translator │ │ summarizer │ │
│ │ 读取 "input" │ │ 读取 "input" │ │
│ └──────────────────┘ └──────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────────────┐
│ STEP 2: 并行执行后 │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ State: { │
│ "input": "AI is transforming how we work", │
│ "translation": "L'IA transforme notre façon de travailler", │
│ "summary": "AI is revolutionizing work through technology" │
│ } │
│ │
│ ↓ │
│ │
│ ┌──────────────────────────────────────┐ │
│ │ combine │ │
│ │ 读取 "translation" + "summary" │ │
│ │ 写入 "result" │ │
│ └──────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────────────┐
│ STEP 3: 最终状态 │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ State: { │
│ "input": "AI is transforming how we work", │
│ "translation": "L'IA transforme notre façon de travailler", │
│ "summary": "AI is revolutionizing work through technology", │
│ "result": "=== Processing Complete ===\n\nFrench..." │
│ } │
│ │
└─────────────────────────────────────────────────────────────────────┘
工作原理
| Component | Role |
|---|---|
AgentNode | 使用输入/输出映射器封装 LLM agents |
input_mapper | 将状态转换为 agent input Content |
output_mapper | 将 agent 事件转换为状态更新 |
channels | 声明图将使用的状态字段 |
edge() | 定义节点之间的执行流 |
ExecutionConfig | 提供用于检查点的线程 ID |
使用 LLM 分类实现条件路由
构建智能路由系统,让 LLM 决定执行路径:
可视化:基于情感的路由
┌─────────────────────┐
User Feedback │ │
────────────────▶ │ CLASSIFIER │
│ 🧠 Analyze tone │
└──────────┬──────────┘
│
┌───────────────┼───────────────┐
│ │ │
▼ ▼ ▼
┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐
│ POSITIVE │ │ NEGATIVE │ │ NEUTRAL │
│ │ │ │ │ │
│ 😊 Thank you! │ │ 😔 Apologize │ │ 😐 Ask more │
│ Celebrate │ │ Help fix │ │ questions │
└──────────────────┘ └──────────────────┘ └──────────────────┘
完整示例代码
use adk_agent::LlmAgentBuilder;
use adk_graph::{
edge::{END, Router, START},
graph::StateGraph,
node::{AgentNode, ExecutionConfig},
state::State,
};
use adk_model::GeminiModel;
use serde_json::json;
use std::sync::Arc;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
dotenvy::dotenv().ok();
let api_key = std::env::var("GOOGLE_API_KEY")?;
let model = Arc::new(GeminiModel::new(&api_key, "gemini-2.0-flash")?);
// Create classifier agent
let classifier_agent = Arc::new(
LlmAgentBuilder::new("classifier")
.description("Classifies text sentiment")
.model(model.clone())
.instruction(
"You are a sentiment classifier. Analyze the input text and respond with \
ONLY one word: 'positive', 'negative', or 'neutral'. Nothing else.",
)
.build()?,
);
// Create response agents for each sentiment
let positive_agent = Arc::new(
LlmAgentBuilder::new("positive")
.description("Handles positive feedback")
.model(model.clone())
.instruction(
"You are a customer success specialist. The customer has positive feedback. \
Express gratitude, reinforce the positive experience, and suggest ways to \
share their experience. Be warm and appreciative. Keep response under 3 sentences.",
)
.build()?,
);
let negative_agent = Arc::new(
LlmAgentBuilder::new("negative")
.description("Handles negative feedback")
.model(model.clone())
.instruction(
"You are a customer support specialist. The customer has a complaint. \
Acknowledge their frustration, apologize sincerely, and offer help. \
Be empathetic. Keep response under 3 sentences.",
)
.build()?,
);
let neutral_agent = Arc::new(
LlmAgentBuilder::new("neutral")
.description("Handles neutral feedback")
.model(model.clone())
.instruction(
"You are a customer service representative. The customer has neutral feedback. \
Ask clarifying questions to better understand their needs. Be helpful and curious. \
Keep response under 3 sentences.",
)
.build()?,
);
// Create AgentNodes with mappers
let classifier_node = AgentNode::new(classifier_agent)
.with_input_mapper(|state| {
let text = state.get("feedback").and_then(|v| v.as_str()).unwrap_or("");
adk_core::Content::new("user").with_text(text)
})
.with_output_mapper(|events| {
let mut updates = std::collections::HashMap::new();
for event in events {
if let Some(content) = event.content() {
let text: String = content.parts.iter()
.filter_map(|p| p.text())
.collect::<Vec<_>>()
.join("")
.to_lowercase()
.trim()
.to_string();
let sentiment = if text.contains("positive") { "positive" }
else if text.contains("negative") { "negative" }
else { "neutral" };
updates.insert("sentiment".to_string(), json!(sentiment));
}
}
updates
});
// Response nodes (similar pattern for each)
let positive_node = AgentNode::new(positive_agent)
.with_input_mapper(|state| {
let text = state.get("feedback").and_then(|v| v.as_str()).unwrap_or("");
adk_core::Content::new("user").with_text(text)
})
.with_output_mapper(|events| {
let mut updates = std::collections::HashMap::new();
for event in events {
if let Some(content) = event.content() {
let text: String = content.parts.iter()
.filter_map(|p| p.text())
.collect::<Vec<_>>()
.join("");
updates.insert("response".to_string(), json!(text));
}
}
updates
});
// Build graph with conditional routing
let graph = StateGraph::with_channels(&["feedback", "sentiment", "response"])
.add_node(classifier_node)
.add_node(positive_node)
// ... add negative_node and neutral_node similarly
.add_edge(START, "classifier")
.add_conditional_edges(
"classifier",
Router::by_field("sentiment"), // Route based on sentiment field
[
("positive", "positive"),
("negative", "negative"),
("neutral", "neutral"),
],
)
.add_edge("positive", END)
.add_edge("negative", END)
.add_edge("neutral", END)
.compile()?;
// Test with different feedback
let mut input = State::new();
input.insert("feedback".to_string(), json!("Your product is amazing! I love it!"));
let result = graph.invoke(input, ExecutionConfig::new("feedback-1")).await?;
println!("Sentiment: {}", result.get("sentiment").and_then(|v| v.as_str()).unwrap_or(""));
println!("Response: {}", result.get("response").and_then(|v| v.as_str()).unwrap_or(""));
Ok(())
}
示例流程:
Input: "Your product is amazing! I love it!"
↓
Classifier: "positive"
↓
Positive Agent: "Thank you so much for the wonderful feedback!
We're thrilled you love our product.
Would you consider leaving a review to help others?"
ReAct 模式:推理 + 行动
构建能够迭代使用工具来解决复杂问题的 Agent:
视觉:ReAct 循环
┌─────────────────────┐
User Question │ │
────────────────▶ │ REASONER │
│ 🧠 Think + Act │
└──────────┬──────────┘
│
▼
┌─────────────────────┐
│ Has tool calls? │
│ │
└──────────┬──────────┘
│
┌───────────────┴───────────────┐
│ │
▼ ▼
┌──────────────────┐ ┌──────────────────┐
│ YES │ │ NO │
│ │ │ │
│ 🔄 Loop back │ │ ✅ Final answer │
│ to reasoner │ │ END │
└─────────┬────────┘ └───────────────────┘
│
└─────────────────┐
│
▼
┌─────────────────────┐
│ REASONER │
│ 🧠 Think + Act │
│ (next iteration) │
└─────────────────────┘
完整的 ReAct 示例
use adk_agent::LlmAgentBuilder;
use adk_core::{Part, Tool};
use adk_graph::{
edge::{END, START},
graph::StateGraph,
node::{AgentNode, ExecutionConfig, NodeOutput},
state::State,
};
use adk_model::GeminiModel;
use adk_tool::FunctionTool;
use serde_json::json;
use std::sync::Arc;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
dotenvy::dotenv().ok();
let api_key = std::env::var("GOOGLE_API_KEY")?;
let model = Arc::new(GeminiModel::new(&api_key, "gemini-2.0-flash")?);
// Create tools
let weather_tool = Arc::new(FunctionTool::new(
"get_weather",
"Get the current weather for a location. Takes a 'location' parameter (city name).",
|_ctx, args| async move {
let location = args.get("location").and_then(|v| v.as_str()).unwrap_or("unknown");
Ok(json!({
"location": location,
"temperature": "72°F",
"condition": "Sunny",
"humidity": "45%"
}))
},
)) as Arc<dyn Tool>;
let calculator_tool = Arc::new(FunctionTool::new(
"calculator",
"Perform mathematical calculations. Takes an 'expression' parameter (string).",
|_ctx, args| async move {
let expr = args.get("expression").and_then(|v| v.as_str()).unwrap_or("0");
let result = match expr {
"2 + 2" => "4",
"10 * 5" => "50",
"100 / 4" => "25",
"15 - 7" => "8",
_ => "Unable to evaluate",
};
Ok(json!({ "result": result, "expression": expr }))
},
)) as Arc<dyn Tool>;
// Create reasoner agent with tools
let reasoner_agent = Arc::new(
LlmAgentBuilder::new("reasoner")
.description("Reasoning agent with tools")
.model(model.clone())
.instruction(
"You are a helpful assistant with access to tools. Use tools when needed to answer questions. \
When you have enough information, provide a final answer without using more tools.",
)
.tool(weather_tool)
.tool(calculator_tool)
.build()?,
);
// Create reasoner node that detects tool usage
let reasoner_node = AgentNode::new(reasoner_agent)
.with_input_mapper(|state| {
let question = state.get("question").and_then(|v| v.as_str()).unwrap_or("");
adk_core::Content::new("user").with_text(question)
})
.with_output_mapper(|events| {
let mut updates = std::collections::HashMap::new();
let mut has_tool_calls = false;
let mut response = String::new();
for event in events {
if let Some(content) = event.content() {
for part in &content.parts {
match part {
Part::FunctionCall { .. } => {
has_tool_calls = true;
}
Part::Text { text } => {
response.push_str(text);
}
_ => {}
}
}
}
}
updates.insert("has_tool_calls".to_string(), json!(has_tool_calls));
updates.insert("response".to_string(), json!(response));
updates
});
// Build ReAct graph with cycle
let graph = StateGraph::with_channels(&["question", "has_tool_calls", "response", "iteration"])
.add_node(reasoner_node)
.add_node_fn("counter", |ctx| async move {
let i = ctx.get("iteration").and_then(|v| v.as_i64()).unwrap_or(0);
Ok(NodeOutput::new().with_update("iteration", json!(i + 1)))
})
.add_edge(START, "counter")
.add_edge("counter", "reasoner")
.add_conditional_edges(
"reasoner",
|state| {
let has_tools = state.get("has_tool_calls").and_then(|v| v.as_bool()).unwrap_or(false);
let iteration = state.get("iteration").and_then(|v| v.as_i64()).unwrap_or(0);
// Safety limit
if iteration >= 5 { return END.to_string(); }
if has_tools {
"counter".to_string() // Loop back for more reasoning
} else {
END.to_string() // Done - final answer
}
},
[("counter", "counter"), (END, END)],
)
.compile()?
.with_recursion_limit(10);
// Test the ReAct agent
let mut input = State::new();
input.insert("question".to_string(), json!("What's the weather in Paris and what's 15 + 25?"));
let result = graph.invoke(input, ExecutionConfig::new("react-1")).await?;
println!("Final answer: {}", result.get("response").and_then(|v| v.as_str()).unwrap_or(""));
println!("Iterations: {}", result.get("iteration").and_then(|v| v.as_i64()).unwrap_or(0));
Ok(())
}
示例流程:
Question: "What's the weather in Paris and what's 15 + 25?"
Iteration 1:
Reasoner: "I need to get weather info and do math"
→ Calls get_weather(location="Paris") and calculator(expression="15 + 25")
→ has_tool_calls = true → Loop back
Iteration 2:
Reasoner: "Based on the results: Paris is 72°F and sunny, 15 + 25 = 40"
→ No tool calls → has_tool_calls = false → END
Final Answer: "The weather in Paris is 72°F and sunny with 45% humidity.
And 15 + 25 equals 40."
AgentNode
将任何 ADK Agent(通常是 LlmAgent)封装为图节点:
let node = AgentNode::new(llm_agent)
.with_input_mapper(|state| {
// Transform graph state to agent input Content
let text = state.get("input").and_then(|v| v.as_str()).unwrap_or("");
adk_core::Content::new("user").with_text(text)
})
.with_output_mapper(|events| {
// Transform agent events to state updates
let mut updates = std::collections::HashMap::new();
for event in events {
if let Some(content) = event.content() {
let text: String = content.parts.iter()
.filter_map(|p| p.text())
.collect::<Vec<_>>()
.join("");
updates.insert("output".to_string(), json!(text));
}
}
updates
});
功能节点
处理状态的简单 async 函数:
.node_fn("process", |ctx| async move {
let input = ctx.state.get("input").unwrap();
let output = process_data(input).await?;
Ok(NodeOutput::new().with_update("output", output))
})
边类型
静态边
节点之间的直接连接:
.edge(START, "first_node")
.edge("first_node", "second_node")
.edge("second_node", END)
条件边
基于状态的动态路由:
.conditional_edge(
"router",
|state| {
match state.get("next").and_then(|v| v.as_str()) {
Some("research") => "research_node".to_string(),
Some("write") => "write_node".to_string(),
_ => END.to_string(),
}
},
[
("research_node", "research_node"),
("write_node", "write_node"),
(END, END),
],
)
路由器助手
使用内置路由器实现常见模式:
use adk_graph::edge::Router;
// 根据状态字段值进行路由
.conditional_edge("classifier", Router::by_field("sentiment"), [
("positive", "positive_handler"),
("negative", "negative_handler"),
("neutral", "neutral_handler"),
])
// 根据布尔字段进行路由
.conditional_edge("check", Router::by_bool("approved"), [
("true", "execute"),
("false", "reject"),
])
// 限制迭代次数
.conditional_edge("loop", Router::max_iterations("count", 5), [
("continue", "process"),
("done", END),
])
并行执行
来自单个节点的多个边并行执行:
let agent = GraphAgent::builder("parallel_processor")
.channels(&["input", "translation", "summary", "analysis"])
.node(translator_node)
.node(summarizer_node)
.node(analyzer_node)
.node(combiner_node)
// 三个同时启动
.edge(START, "translator")
.edge(START, "summarizer")
.edge(START, "analyzer")
// 等待所有完成后再合并
.edge("translator", "combiner")
.edge("summarizer", "combiner")
.edge("analyzer", "combiner")
.edge("combiner", END)
.build()?;
循环图 (ReAct 模式)
构建具有循环的迭代推理 Agent:
use adk_core::Part;
// Create agent with tools
let reasoner = Arc::new(
LlmAgentBuilder::new("reasoner")
.model(model)
.instruction("Use tools to answer questions. Provide final answer when done.")
.tool(search_tool)
.tool(calculator_tool)
.build()?
);
let reasoner_node = AgentNode::new(reasoner)
.with_input_mapper(|state| {
let question = state.get("question").and_then(|v| v.as_str()).unwrap_or("");
adk_core::Content::new("user").with_text(question)
})
.with_output_mapper(|events| {
let mut updates = std::collections::HashMap::new();
let mut has_tool_calls = false;
let mut response = String::new();
for event in events {
if let Some(content) = event.content() {
for part in &content.parts {
match part {
Part::FunctionCall { name, .. } => {
has_tool_calls = true;
}
Part::Text { text } => {
response.push_str(text);
}
_ => {}
}
}
}
}
updates.insert("has_tool_calls".to_string(), json!(has_tool_calls));
updates.insert("response".to_string(), json!(response));
updates
});
// Build graph with cycle
let react_agent = StateGraph::with_channels(&["question", "has_tool_calls", "response", "iteration"])
.add_node(reasoner_node)
.add_node_fn("counter", |ctx| async move {
let i = ctx.get("iteration").and_then(|v| v.as_i64()).unwrap_or(0);
Ok(NodeOutput::new().with_update("iteration", json!(i + 1)))
})
.add_edge(START, "counter")
.add_edge("counter", "reasoner")
.add_conditional_edges(
"reasoner",
|state| {
let has_tools = state.get("has_tool_calls").and_then(|v| v.as_bool()).unwrap_or(false);
let iteration = state.get("iteration").and_then(|v| v.as_i64()).unwrap_or(0);
// Safety limit
if iteration >= 5 { return END.to_string(); }
if has_tools {
"counter".to_string() // Loop back
} else {
END.to_string() // Done
}
},
[("counter", "counter"), (END, END)],
)
.compile()?
.with_recursion_limit(10);
多智能体主管
将任务路由给专业智能体:
// Create supervisor agent
let supervisor = Arc::new(
LlmAgentBuilder::new("supervisor")
.model(model.clone())
.instruction("Route tasks to: researcher, writer, or coder. Reply with agent name only.")
.build()?
);
let supervisor_node = AgentNode::new(supervisor)
.with_output_mapper(|events| {
let mut updates = std::collections::HashMap::new();
for event in events {
if let Some(content) = event.content() {
let text: String = content.parts.iter()
.filter_map(|p| p.text())
.collect::<Vec<_>>()
.join("")
.to_lowercase();
let next = if text.contains("researcher") { "researcher" }
else if text.contains("writer") { "writer" }
else if text.contains("coder") { "coder" }
else { "done" };
updates.insert("next_agent".to_string(), json!(next));
}
}
updates
});
// Build supervisor graph
let graph = StateGraph::with_channels(&["task", "next_agent", "research", "content", "code"])
.add_node(supervisor_node)
.add_node(researcher_node)
.add_node(writer_node)
.add_node(coder_node)
.add_edge(START, "supervisor")
.add_conditional_edges(
"supervisor",
Router::by_field("next_agent"),
[
("researcher", "researcher"),
("writer", "writer"),
("coder", "coder"),
("done", END),
],
)
// Agents report back to supervisor
.add_edge("researcher", "supervisor")
.add_edge("writer", "supervisor")
.add_edge("coder", "supervisor")
.compile()?;
状态管理
带有 Reducer 的状态模式
控制状态更新的合并方式:
let schema = StateSchema::builder()
.channel("current_step") // Overwrite (default)
.list_channel("messages") // Append to list
.channel_with_reducer("count", Reducer::Sum) // Sum values
.channel_with_reducer("data", Reducer::Custom(Arc::new(|old, new| {
// Custom merge logic
merge_json(old, new)
})))
.build();
let agent = GraphAgent::builder("stateful")
.state_schema(schema)
// ... nodes and edges
.build()?;
Reducer 类型
| Reducer | 行为 |
|---|---|
Overwrite | 用新值替换旧值(默认) |
Append | 追加到列表中 |
Sum | 累加数值 |
Custom | 自定义合并函数 |
检查点
启用持久化状态以实现容错和人机协作:
内存中(开发环境)
use adk_graph::checkpoint::MemoryCheckpointer;
let checkpointer = Arc::new(MemoryCheckpointer::new());
let graph = StateGraph::with_channels(&["task", "result"])
// ... nodes and edges
.compile()?
.with_checkpointer_arc(checkpointer.clone());
SQLite(生产环境)
use adk_graph::checkpoint::SqliteCheckpointer;
let checkpointer = SqliteCheckpointer::new("checkpoints.db").await?;
let graph = StateGraph::with_channels(&["task", "result"])
// ... nodes and edges
.compile()?
.with_checkpointer(checkpointer);
检查点历史(时间旅行)
// List all checkpoints for a thread
let checkpoints = checkpointer.list("thread-id").await?;
for cp in checkpoints {
println!("Step {}: {:?}", cp.step, cp.state.get("status"));
}
// Load a specific checkpoint
if let Some(checkpoint) = checkpointer.load_by_id(&checkpoint_id).await? {
println!("State at step {}: {:?}", checkpoint.step, checkpoint.state);
}
人机协作
使用动态中断暂停执行以待人工批准:
use adk_graph::{error::GraphError, node::NodeOutput};
// Planner agent assesses risk
let planner_node = AgentNode::new(planner_agent)
.with_output_mapper(|events| {
let mut updates = std::collections::HashMap::new();
for event in events {
if let Some(content) = event.content() {
let text: String = content.parts.iter()
.filter_map(|p| p.text())
.collect::<Vec<_>>()
.join("");
// Extract risk level from LLM response
let risk = if text.to_lowercase().contains("risk: high") { "high" }
else if text.to_lowercase().contains("risk: medium") { "medium" }
else { "low" };
updates.insert("plan".to_string(), json!(text));
updates.insert("risk_level".to_string(), json!(risk));
}
}
updates
});
// Review node with dynamic interrupt
let graph = StateGraph::with_channels(&["task", "plan", "risk_level", "approved", "result"])
.add_node(planner_node)
.add_node(executor_node)
.add_node_fn("review", |ctx| async move {
let risk = ctx.get("risk_level").and_then(|v| v.as_str()).unwrap_or("low");
let approved = ctx.get("approved").and_then(|v| v.as_bool());
// Already approved - continue
if approved == Some(true) {
return Ok(NodeOutput::new());
}
// High/medium risk - interrupt for approval
if risk == "high" || risk == "medium" {
return Ok(NodeOutput::interrupt_with_data(
&format!("{} RISK: Human approval required", risk.to_uppercase()),
json!({
"plan": ctx.get("plan"),
"risk_level": risk,
"action": "Set 'approved' to true to continue"
})
));
}
// Low risk - auto-approve
Ok(NodeOutput::new().with_update("approved", json!(true)))
})
.add_edge(START, "planner")
.add_edge("planner", "review")
.add_edge("review", "executor")
.add_edge("executor", END)
.compile()?
.with_checkpointer_arc(checkpointer.clone());
// Execute - may pause for approval
let thread_id = "task-001";
let result = graph.invoke(input, ExecutionConfig::new(thread_id)).await;
match result {
Err(GraphError::Interrupted(interrupt)) => {
println!("*** EXECUTION PAUSED ***");
println!("Reason: {}", interrupt.interrupt);
println!("Plan awaiting approval: {:?}", interrupt.state.get("plan"));
// Human reviews and approves...
// Update state with approval
graph.update_state(thread_id, [("approved".to_string(), json!(true))]).await?;
// Resume execution
let final_result = graph.invoke(State::new(), ExecutionConfig::new(thread_id)).await?;
println!("Final result: {:?}", final_result.get("result"));
}
Ok(result) => {
println!("Completed without interrupt: {:?}", result);
}
Err(e) => {
println!("Error: {}", e);
}
}
静态中断
使用 interrupt_before 或 interrupt_after 设置强制暂停点:
let graph = StateGraph::with_channels(&["task", "plan", "result"])
.add_node(planner_node)
.add_node(executor_node)
.add_edge(START, "planner")
.add_edge("planner", "executor")
.add_edge("executor", END)
.compile()?
.with_interrupt_before(&["executor"]); // Always pause before execution
流式执行
在图执行时流式传输事件:
use futures::StreamExt;
use adk_graph::stream::StreamMode;
let stream = agent.stream(input, config, StreamMode::Updates);
while let Some(event) = stream.next().await {
match event? {
StreamEvent::NodeStart(name) => println!("Starting: {}", name),
StreamEvent::Updates { node, updates } => {
println!("{} updated state: {:?}", node, updates);
}
StreamEvent::NodeEnd(name) => println!("Completed: {}", name),
StreamEvent::Done(state) => println!("Final state: {:?}", state),
_ => {}
}
}
流模式
| Mode | Description |
|---|---|
Values | 在每个节点后流式传输完整状态 |
Updates | 仅流式传输状态更改 |
Messages | 流式传输消息类型更新 |
Debug | 流式传输所有内部事件 |
ADK 集成
GraphAgent 实现了 ADK Agent trait,因此它支持:
- Runner: 配合
adk-runner进行标准执行 - Callbacks: 全面支持前/后回调
- Sessions: 配合
adk-session记录会话历史 - Streaming: 返回 ADK
EventStream
use adk_runner::Runner;
let graph_agent = GraphAgent::builder("workflow")
.before_agent_callback(|ctx| async {
println!("Starting graph execution for session: {}", ctx.session_id());
Ok(())
})
.after_agent_callback(|ctx, event| async {
if let Some(content) = event.content() {
println!("Graph completed with content");
}
Ok(())
})
// ... graph definition
.build()?;
// GraphAgent implements Agent trait - use with Launcher or Runner
// See adk-runner README for Runner configuration
示例
所有示例都使用 AgentNode 与真实 LlmAgent 的集成:
# Parallel LLM agents with before/after callbacks
cargo run --example graph_agent
# Sequential multi-agent pipeline (extractor → analyzer → formatter)
cargo run --example graph_workflow
# LLM-based sentiment classification and conditional routing
cargo run --example graph_conditional
# ReAct pattern with tools and cyclic execution
cargo run --example graph_react
# Multi-agent supervisor routing to specialists
cargo run --example graph_supervisor
# Human-in-the-loop with risk-based interrupts
cargo run --example graph_hitl
# Checkpointing and time travel debugging
cargo run --example graph_checkpoint
与 LangGraph 的比较
| Feature | LangGraph | adk-graph |
|---|---|---|
| 状态管理 | TypedDict + Reducers | StateSchema + Reducers |
| 执行模型 | Pregel super-steps | Pregel super-steps |
| 检查点 | Memory, SQLite, Postgres | Memory, SQLite |
| 人机协作 | interrupt_before/after | interrupt_before/after + dynamic |
| 流式传输 | 5 modes | 5 modes |
| 循环 | 原生支持 | 原生支持 |
| 类型安全 | Python typing | Rust type system |
| LlmAgent 集成 | LangChain | AgentNode + ADK agents |