Ferramentas de Função
Estenda as capacidades dos agentes com funções Rust personalizadas.
O que são Ferramentas de Função?
Ferramentas de função permitem que você dê aos agentes habilidades além da conversação - chamando APIs, realizando cálculos, acessando bancos de dados, ou qualquer lógica personalizada. O LLM decide quando usar uma Tool com base na solicitação do usuário.
Destaques principais:
- 🔧 Encapsule qualquer função async como uma Tool chamável
- 📝 Parâmetros JSON - entrada/saída flexíveis
- 🎯 Esquemas type-safe - validação opcional de JSON Schema
- 🔗 Acesso ao contexto - estado da Session, artefatos, memória
Passo 1: Ferramenta Básica
Crie uma Tool com FunctionTool::new() e sempre adicione um schema para que o LLM saiba quais parâmetros passar:
use adk_rust::prelude::*;
use adk_rust::Launcher;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use serde_json::json;
use std::sync::Arc;
#[derive(JsonSchema, Serialize, Deserialize)]
struct WeatherParams {
/// The city or location to get weather for
location: String,
}
#[tokio::main]
async fn main() -> anyhow::Result<()> {
dotenvy::dotenv().ok();
let api_key = std::env::var("GOOGLE_API_KEY")?;
let model = GeminiModel::new(&api_key, "gemini-2.5-flash")?;
// Weather tool with proper schema
let weather_tool = FunctionTool::new(
"get_weather",
"Get current weather for a location",
|_ctx, args| async move {
let location = args.get("location")
.and_then(|v| v.as_str())
.unwrap_or("unknown");
Ok(json!({
"location": location,
"temperature": "22°C",
"conditions": "sunny"
}))
},
)
.with_parameters_schema::<WeatherParams>(); // Required for LLM to call correctly!
let agent = LlmAgentBuilder::new("weather_agent")
.instruction("You help users check the weather. Always use the get_weather tool.")
.model(Arc::new(model))
.tool(Arc::new(weather_tool))
.build()?;
Launcher::new(Arc::new(agent)).run().await?;
Ok(())
}
⚠️ Importante: Sempre use
.with_parameters_schema<T>()- sem ele, o LLM não saberá quais parâmetros passar e pode não chamar a Tool.
Como funciona:
- Usuário pergunta: "Qual é a previsão do tempo em Tóquio?"
- O LLM decide chamar
get_weathercom{"location": "Tokyo"} - A Tool retorna
{"location": "Tokyo", "temperature": "22°C", "conditions": "sunny"} - O LLM formata a resposta: "A previsão do tempo em Tóquio é ensolarada, com 22°C."
Passo 2: Manipulação de Parâmetros
Extraia os parâmetros do JSON args:
let order_tool = FunctionTool::new(
"process_order",
"Process an order. Parameters: product_id (required), quantity (required), priority (optional)",
|_ctx, args| async move {
// Required parameters - return error if missing
let product_id = args.get("product_id")
.and_then(|v| v.as_str())
.ok_or_else(|| adk_core::AdkError::Tool("product_id is required".into()))?;
let quantity = args.get("quantity")
.and_then(|v| v.as_i64())
.ok_or_else(|| adk_core::AdkError::Tool("quantity is required".into()))?;
// Optional parameter with default
let priority = args.get("priority")
.and_then(|v| v.as_str())
.unwrap_or("normal");
Ok(json!({
"order_id": "ORD-12345",
"product_id": product_id,
"quantity": quantity,
"priority": priority,
"status": "confirmed"
}))
},
);
Passo 3: Parâmetros Tipados com Esquema
Para ferramentas complexas, use structs tipadas com JSON Schema:
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
#[derive(JsonSchema, Serialize, Deserialize)]
struct CalculatorParams {
/// The arithmetic operation to perform
operation: Operation,
/// First operand
a: f64,
/// Second operand
b: f64,
}
#[derive(JsonSchema, Serialize, Deserialize)]
#[serde(rename_all = "lowercase")]
enum Operation {
Add,
Subtract,
Multiply,
Divide,
}
let calculator = FunctionTool::new(
"calculator",
"Perform arithmetic operations",
|_ctx, args| async move {
let params: CalculatorParams = serde_json::from_value(args)?;
let result = match params.operation {
Operation::Add => params.a + params.b,
Operation::Subtract => params.a - params.b,
Operation::Multiply => params.a * params.b,
Operation::Divide if params.b != 0.0 => params.a / params.b,
Operation::Divide => return Err(adk_core::AdkError::Tool("Cannot divide by zero".into())),
};
Ok(json!({ "result": result }))
},
)
.with_parameters_schema::<CalculatorParams>();
O esquema é gerado automaticamente a partir de tipos Rust usando schemars.
Passo 4: Agente Multi-Ferramenta
Adicione múltiplas ferramentas a um Agent:
let agent = LlmAgentBuilder::new("assistant")
.instruction("Help with calculations, conversions, and weather.")
.model(Arc::new(model))
.tool(Arc::new(calc_tool))
.tool(Arc::new(convert_tool))
.tool(Arc::new(weather_tool))
.build()?;
O LLM escolhe automaticamente a ferramenta correta com base na solicitação do usuário.
Tratamento de Erros
Retorne AdkError::Tool para erros específicos da ferramenta:
let divide_tool = FunctionTool::new(
"divide",
"Divide two numbers",
|_ctx, args| async move {
let a = args.get("a").and_then(|v| v.as_f64())
.ok_or_else(|| adk_core::AdkError::Tool("Parameter 'a' is required".into()))?;
let b = args.get("b").and_then(|v| v.as_f64())
.ok_or_else(|| adk_core::AdkError::Tool("Parameter 'b' is required".into()))?;
if b == 0.0 {
return Err(adk_core::AdkError::Tool("Cannot divide by zero".into()));
}
Ok(json!({ "result": a / b }))
},
);
As mensagens de erro são passadas para o LLM, que pode tentar novamente ou solicitar uma entrada diferente.
Contexto da Ferramenta
Acesse as informações da sessão via ToolContext:
#[derive(JsonSchema, Serialize, Deserialize)]
struct GreetParams {
#[serde(default)]
message: Option<String>,
}
let greet_tool = FunctionTool::new(
"greet",
"Greet the user with session info",
|ctx, _args| async move {
let user_id = ctx.user_id();
let session_id = ctx.session_id();
let agent_name = ctx.agent_name();
Ok(json!({
"greeting": format!("Hello, user {}!", user_id),
"session": session_id,
"served_by": agent_name
}))
},
)
.with_parameters_schema::<GreetParams>();
Contexto disponível:
ctx.user_id()- ID de usuário atualctx.session_id()- ID de sessão atualctx.agent_name()- Nome doAgentctx.artifacts()- Acesso ao armazenamento de artefatosctx.search_memory(query)- Serviço de pesquisa de memória
Ferramentas de Longa Duração
Para operações que demoram um tempo significativo (processamento de dados, APIs externas), utilize o padrão não-bloqueante:
- Ferramenta de Início retorna imediatamente com um
task_id - Trabalho em segundo plano é executado assincronamente
- Ferramenta de Status permite aos usuários verificar o progresso
use std::collections::HashMap;
use std::sync::Arc;
use tokio::sync::RwLock;
#[derive(JsonSchema, Serialize, Deserialize)]
struct ReportParams {
topic: String,
}
#[derive(JsonSchema, Serialize, Deserialize)]
struct StatusParams {
task_id: String,
}
// Shared task store
let tasks: Arc<RwLock<HashMap<String, TaskState>>> = Arc::new(RwLock::new(HashMap::new()));
let tasks1 = tasks.clone();
let tasks2 = tasks.clone();
// Tool 1: Start (returns immediately)
let start_tool = FunctionTool::new(
"generate_report",
"Start generating a report. Returns task_id immediately.",
move |_ctx, args| {
let tasks = tasks1.clone();
async move {
let topic = args.get("topic").and_then(|v| v.as_str()).unwrap_or("general").to_string();
let task_id = format!("task_{}", rand::random::<u32>());
// Store initial state
tasks.write().await.insert(task_id.clone(), TaskState {
status: "processing".to_string(),
progress: 0,
result: None,
});
// Spawn background work (non-blocking!)
let tasks_bg = tasks.clone();
let tid = task_id.clone();
tokio::spawn(async move {
// Simulate work...
tokio::time::sleep(tokio::time::Duration::from_secs(10)).await;
if let Some(t) = tasks_bg.write().await.get_mut(&tid) {
t.status = "completed".to_string();
t.result = Some("Report complete".to_string());
}
});
// Return immediately with task_id
Ok(json!({"task_id": task_id, "status": "processing"}))
}
},
)
.with_parameters_schema::<ReportParams>()
.with_long_running(true); // Mark as long-running
// Tool 2: Check status
let status_tool = FunctionTool::new(
"check_report_status",
"Check report generation status",
move |_ctx, args| {
let tasks = tasks2.clone();
async move {
let task_id = args.get("task_id").and_then(|v| v.as_str()).unwrap_or("");
if let Some(t) = tasks.read().await.get(task_id) {
Ok(json!({"status": t.status, "result": t.result}))
} else {
Ok(json!({"error": "Task not found"}))
}
}
},
)
.with_parameters_schema::<StatusParams>();
Pontos chave:
.with_long_running(true)informa ao Agent que esta Tool retorna um status pendente- A Tool inicia o trabalho com
tokio::spawn()e retorna imediatamente - Forneça uma Tool de verificação de status para que os usuários possam consultar o progresso
Isso adiciona uma nota para evitar que o LLM chame a Tool repetidamente.
Exemplos de Execução
cd official_docs_examples/tools/function_tools_test
# Basic tool with closure
cargo run --bin basic
# Tool with typed JSON schema
cargo run --bin with_schema
# Multi-tool agent (3 tools)
cargo run --bin multi_tool
# Tool context (session info)
cargo run --bin context
# Long-running tool
cargo run --bin long_running
Melhores Práticas
- Descrições claras - Ajude o LLM a entender quando usar a Tool
- Valide as entradas - Retorne mensagens de erro úteis para parâmetros ausentes
- Retorne JSON estruturado - Use nomes de campos claros
- Mantenha as Tools focadas - Cada Tool deve fazer uma coisa bem
- Use schemas - Para Tools complexas, defina schemas de parâmetros
Relacionado
- Built-in Tools - Tools pré-construídas (GoogleSearch, ExitLoop)
- MCP Tools - Integração com Model Context Protocol
- LlmAgent - Adicionando Tools a Agents
Anterior: ← mistral.rs | Próximo: Built-in Tools →